Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photoluminescence properties of InGaAsN films on Ge(001) vicinal substrates

Identifieur interne : 000721 ( Main/Repository ); précédent : 000720; suivant : 000722

Photoluminescence properties of InGaAsN films on Ge(001) vicinal substrates

Auteurs : RBID : Pascal:13-0201173

Descripteurs français

English descriptors

Abstract

The InGaAsN films lattice-matched to Ge substrates and having an about 1 eV bandgap energy have been grown on Ge(001) vicinal substrates by metal organic vapor phase epitaxy (MOVPE) varying the group-V precursor flow rates, and their photoluminescence (PL) properties have been investigated. Rapid thermal annealing (RTA) with suitable conditions has improved the luminescence properties. The PL spectral shifts with temperature and excitation intensity indicate that a larger flow of the group-V precursors enhances the carrier localization due to the potential fluctuations caused by the compositional non-uniformity and other localized states which originate from impurities or crystal defects. The huge amount of 1, 1-dimethylhydrazine (DMHy), which can efficiently incorporate N, may also introduce a significant amount of carbon species which can act as impurities, or may suppress the surface migration of the group-III atoms resulting in compositional non-uniformity and crystal defects.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0201173

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Photoluminescence properties of InGaAsN films on Ge(001) vicinal substrates</title>
<author>
<name sortKey="Uesugi, K" uniqKey="Uesugi K">K. Uesugi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Advanced Materials Science, The University of Tokyo</s1>
<s2>5-1-5 Kashiwanoha 277-8561</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>5-1-5 Kashiwanoha 277-8561</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kuboya, S" uniqKey="Kuboya S">S. Kuboya</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Advanced Materials Science, The University of Tokyo</s1>
<s2>5-1-5 Kashiwanoha 277-8561</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>5-1-5 Kashiwanoha 277-8561</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sanorpim, S" uniqKey="Sanorpim S">S. Sanorpim</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, Chulalongkorn University, Phayathai Rd</s1>
<s2>Phathumwan, Bangkok 10330</s2>
<s3>THA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Thaïlande</country>
<wicri:noRegion>Phathumwan, Bangkok 10330</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Onabe, K" uniqKey="Onabe K">K. Onabe</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Advanced Materials Science, The University of Tokyo</s1>
<s2>5-1-5 Kashiwanoha 277-8561</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>5-1-5 Kashiwanoha 277-8561</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0201173</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0201173 INIST</idno>
<idno type="RBID">Pascal:13-0201173</idno>
<idno type="wicri:Area/Main/Corpus">000C85</idno>
<idno type="wicri:Area/Main/Repository">000721</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon</term>
<term>Crystal defects</term>
<term>Diffusion</term>
<term>Energy gap</term>
<term>Excitation intensity</term>
<term>Fluctuations</term>
<term>Gallium arsenides</term>
<term>Gallium nitride</term>
<term>Indium arsenides</term>
<term>Indium nitride</term>
<term>Localized states</term>
<term>Luminescence</term>
<term>MOVPE method</term>
<term>Optical properties</term>
<term>Organic hydrazine</term>
<term>Photoluminescence</term>
<term>Precursor</term>
<term>Quaternary alloys</term>
<term>Rapid thermal annealing</term>
<term>Semiconductor materials</term>
<term>Spectral line shift</term>
<term>Thin films</term>
<term>VPE</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photoluminescence</term>
<term>Couche mince</term>
<term>Bande interdite</term>
<term>Méthode MOVPE</term>
<term>Epitaxie phase vapeur</term>
<term>Précurseur</term>
<term>Recuit thermique rapide</term>
<term>Luminescence</term>
<term>Propriété optique</term>
<term>Déplacement raie</term>
<term>Intensité excitation</term>
<term>Fluctuation</term>
<term>Etat localisé</term>
<term>Défaut cristallin</term>
<term>Nitrure d'indium</term>
<term>Nitrure de gallium</term>
<term>Arséniure d'indium</term>
<term>Arséniure de gallium</term>
<term>Semiconducteur</term>
<term>Hydrazine(1,2-diméthyl)</term>
<term>Hydrazine organique</term>
<term>Carbone</term>
<term>Diffusion(transport)</term>
<term>Alliage quaternaire</term>
<term>InGaAsN</term>
<term>Substrat germanium</term>
<term>7855</term>
<term>8115K</term>
<term>7820</term>
<term>6630</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Carbone</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The InGaAsN films lattice-matched to Ge substrates and having an about 1 eV bandgap energy have been grown on Ge(001) vicinal substrates by metal organic vapor phase epitaxy (MOVPE) varying the group-V precursor flow rates, and their photoluminescence (PL) properties have been investigated. Rapid thermal annealing (RTA) with suitable conditions has improved the luminescence properties. The PL spectral shifts with temperature and excitation intensity indicate that a larger flow of the group-V precursors enhances the carrier localization due to the potential fluctuations caused by the compositional non-uniformity and other localized states which originate from impurities or crystal defects. The huge amount of 1, 1-dimethylhydrazine (DMHy), which can efficiently incorporate N, may also introduce a significant amount of carbon species which can act as impurities, or may suppress the surface migration of the group-III atoms resulting in compositional non-uniformity and crystal defects.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>370</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Photoluminescence properties of InGaAsN films on Ge(001) vicinal substrates</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>16th International Conference on Metalorganic Vapor Phase Epitaxy</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>UESUGI (K.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KUBOYA (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SANORPIM (S.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ONABE (K.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>JONG KYU KIM</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>KUECH (Thomas F.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>CANEAU (Catherine)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="04" i2="1">
<s1>REDWING (Joan M.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="05" i2="1">
<s1>DADGAR (Armin)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Advanced Materials Science, The University of Tokyo</s1>
<s2>5-1-5 Kashiwanoha 277-8561</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, Chulalongkorn University, Phayathai Rd</s1>
<s2>Phathumwan, Bangkok 10330</s2>
<s3>THA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>46-50</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000500688410100</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>16 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0201173</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The InGaAsN films lattice-matched to Ge substrates and having an about 1 eV bandgap energy have been grown on Ge(001) vicinal substrates by metal organic vapor phase epitaxy (MOVPE) varying the group-V precursor flow rates, and their photoluminescence (PL) properties have been investigated. Rapid thermal annealing (RTA) with suitable conditions has improved the luminescence properties. The PL spectral shifts with temperature and excitation intensity indicate that a larger flow of the group-V precursors enhances the carrier localization due to the potential fluctuations caused by the compositional non-uniformity and other localized states which originate from impurities or crystal defects. The huge amount of 1, 1-dimethylhydrazine (DMHy), which can efficiently incorporate N, may also introduce a significant amount of carbon species which can act as impurities, or may suppress the surface migration of the group-III atoms resulting in compositional non-uniformity and crystal defects.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H55</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15K</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H20</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60F30</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>VPE</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Précurseur</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Precursor</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Recuit thermique rapide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Rapid thermal annealing</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Luminescence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Luminescence</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Déplacement raie</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Spectral line shift</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Intensité excitation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Excitation intensity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Intensidad excitación</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Fluctuation</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Fluctuations</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Etat localisé</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Localized states</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Défaut cristallin</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Crystal defects</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Hydrazine(1,2-diméthyl)</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Hydrazine organique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Organic hydrazine</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Hidracina orgánica</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Carbone</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Carbon</s0>
<s2>NC</s2>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Diffusion(transport)</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Diffusion</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Alliage quaternaire</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Quaternary alloys</s0>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>InGaAsN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Substrat germanium</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>7855</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>8115K</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>7820</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>6630</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>182</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>ICMOVPE-XVI International Conference on Metalorganic Vapor Phase Epitaxy</s1>
<s2>16</s2>
<s3>Busan KOR</s3>
<s4>2012-05-20</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000721 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000721 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0201173
   |texte=   Photoluminescence properties of InGaAsN films on Ge(001) vicinal substrates
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024